

Proportional 2-way cartridges high performance

digital, with two position transducers, ISO 7368 sizes from 16 to 100, rugged design

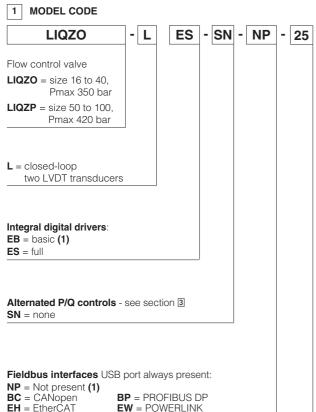
2

LIQZO-LEB, LIQZP-LEB LIQZO-LES, LIQZP-LES

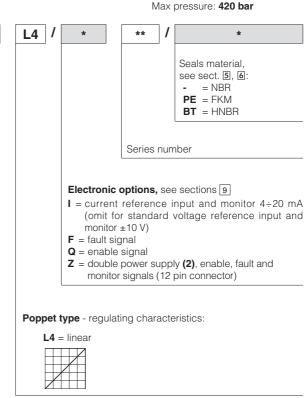
High Performance 2-way proportional cartridge valves specifically designed for high speed closed loop controls.

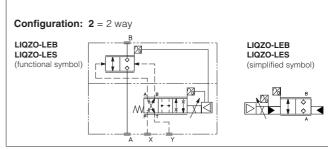
They are equipped with two LVDT position transducers for best dynamics in not compensated flow regulations.

The cartridge execution for blocks installation grants high flow capabilities and minimized pressure drops.


The integral digital electronic driver performs the valve's hydraulic regulation according to the reference signal and assures valve-to-valve interchangeability thanks to the factory presetting.

High performances valves are available in LEB basic execution with analog reference signals and USB port for software functional parameters setting or in LES full execution which includes also optional fieldbus interfaces for functional parameters setting, reference signals and real-time diagnostics


LIQZO: sizes from 16 to 40, Max flow: 600 to 2500 l/min Max pressure: 350 bar


LIQZP: sizes from 50 to 100,

Max flow: 4000 to 16.000 l/min Max pressure: 420 bar

Valve size, see section 3 LIQZO = 25 32 40 16 I/min 250 500 800 1200 LIQZP = 50 63 80 100 I/min 2000 3000 4500 7200 Nominal flow (I/min) at Δp 5 bar

2 GENERAL NOTES

LIQZO-LEB, LES and LIQZP-LEB, LES proportional cartridges are **CE** marked according to the applicable Directives (e.g. Immunity/Emission EMC Directive and Low Voltage Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in table F003 and in the installation notes supplied with relevant components.

The electrical signals of the valve (e.g. monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

WARNING

To avoid overheating and possible damage of the electronic driver, the valves must be never energized without hydraulic supply to the pilot stage. In case of prolonged pauses of the valve operation during the machine cycle, it is always advisable to disable the driver (option /Q or /Z)

A safety fuse 2,5 A installed on 24VDc power supply of each valve is always recommended, see also Power supply note at sections [9]

WARNING

The loss of the pilot pressure causes the undefined position of the main poppet.

The sudden interruption of the power supply during the valve operation causes the immediate shut-off of the main poppet.

This could cause pressure surges in the hydraulic system or high decelerations which may lead to machine damages.

3 FIELDBUS - only for LES

Fieldbus allows the direct communication of the proportional valve with machine control unit for digital reference signal, diagnostics and settings of functional parameters. Analog reference signal remain available on the main connector for quick commissioning and maintenance. For detailed information about fieldbus features and specification see tech table **GS510**.

MAIN CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

Assembly position	Any position	Any position				
Subplate surface finishing	Roughness index, Ra 0	Roughness index, Ra 0,4 flatness ratio 0,01/100 (ISO 1101)				
MTTFd valves according to EN ISO 13849	75 years, see technical	table P007				
Ambient temperature range	standard execution = -2	20°C ÷ +60°C				
	/BT option = -40° C ÷ $+6$	60°C				
Storage temperature range	Standard execution = -2	20°C ÷ +70°C				
	/BT option = -40° C ÷ +7	70°C				
Coil resistance R at 20°C	3 ÷ 3,3 Ω					
Max. solenoid current	2,6 A					
Max. power	50 Watt					
Insulation class	H (180°) Due to the occ	curing surface temperatu	res of the solenoid coils,	the European standards		
	ISO 13732-1 and EN98	2 must be taken into acc	ount			
Protection degree to DIN EN60529	IP66/67 with mating cor	nnectors				
Tropicalization	Tropical coating on ele-	ctronics PCB				
Duty factor	Continuous rating (ED=	:100%)				
EMC, climate and mechanical load	See technical table G004					
Communication interface	USB Atos ASCII coding	CANopen EN50325-4 + DS408	PROFIBUS DP EN50170-2/IEC61158	EtherCAT, POWERLINK IEC 61158		
Communication physical layer	not insulated USB 2.0 + USB OTG	optical insulated CAN ISO11898	optical insulated RS485	Fast Ethernet, insulated 100 Base TX		

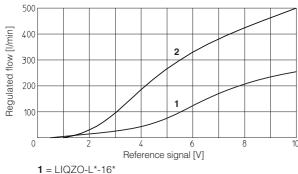
Size		16	25	32	40	50	63	80	100
Max regulated flow	[l/min]								
Δρ Ρ-Τ	at $\Delta p = 5$ bar	250	500	800	1200	2000	3000	4500	7200
Max permissible flow	at $\Delta p = 10$ bar	350 600	700 1200	1100 1800	1700 2500	2800 4000	4250 6000	6350 10000	10200 16000
Wax permissible now	LIQZO	000	1200			X = 350	Y ≤ 10	10000	10000
Max pressure [bar]	LIGZO			Ports A, E	o = 350	A = 350	T ≥ 10		
	LIQZP			Ports A, E	B = 420	X = 350	Y ≤ 10		
Nominal flow of pilot va	lve at $\Delta p = 70$ bar [I/min]	4	7	14	40	40	100	100	100
Leakage of pilot valve	at P = 100 bar [I/min]	0,2	0,2	0,3	0,7	0,7	1	1	1
Piloting pressure	[bar]	min: 40% of system pressure max 350 recommended 140 ÷ 160							
Piloting volume	[cm³]	1,6	2,2	7,0	9,4	17,7	32,5	39,5	59,4
Piloting flow (1)	[l/min]	7,5	9,5	28	32	54	82	80	72
Response time 0 ÷ 10	Response time 0 ÷ 100% step signal (2) [ms]		14	15	18	20	24	30	50
Hysteresis [≤ 0,1								
Repeatability [± 0,1								
Thermal drift			zero point	displacem	ent < 1% at	$\Delta T = 40^{\circ}C$			

Note:

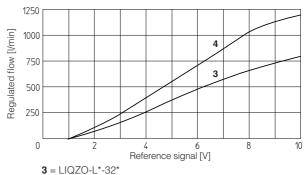
above performance data refer to valves coupled with Atos electronic drivers, see section 6.

5 SEALS AND HYDRAULIC FLUID - for other fluids not included in below table, consult our technical office

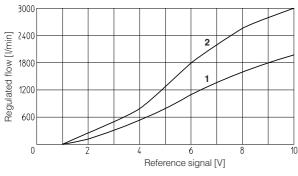
Seals, recommended temperature fluid	NBR seals (standard) = -20° C \div $+60^{\circ}$ C, with HFC hydraulic fluids = -20° C \div $+50^{\circ}$ C FKM seals (/PE option) = -20° C \div $+80^{\circ}$ C HNBR seals (/BT option) = -40° C \div $+60^{\circ}$ C, with HFC hydraulic fluids = -40° C \div $+50^{\circ}$ C				
Recommended viscosity	20÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s				
Fluid contamination class	ISO 4406 class 20/18/15 NAS 1638 class 9, in line filters of 10 μm (β10 ≥75 recommended)				
Hydraulic fluid	Suitable seals type Classification Ref. Standard				
Mineral oils	NBR, FKM, HNBR	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524		
Flame resistant without water	FKM	HFDU, HFDR	ISO 12922		
Flame resistant with water	NBR, HNBR HFC				

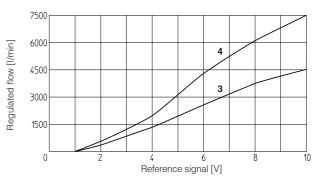

6 ELECTRONIC DRIVERS

Valve model	LES LES			
Drivers model	E-RI-LES-N E-RI-LES-N			
Туре	Digital			
Format	Integral to valve			
Data sheet	GS208 GS210			

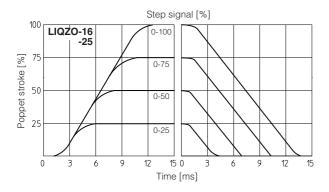

Note: for main and communication connector see sections $\boxed{11}$, $\boxed{12}$

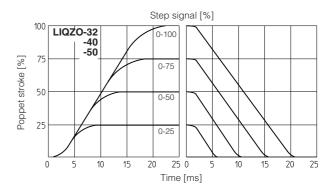
7 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

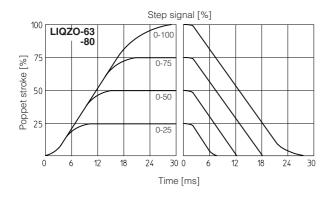

7.1 Regulation diagrams (values measured at Δp 5 bar)

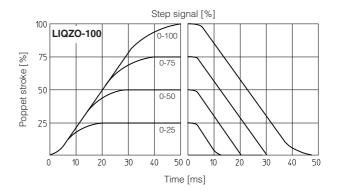

1 = LIQZO-L^-16^ **2** = LIQZO-L*-25*

3 = LIQZO-L*-32* **4** = LIQZO-L*-40*

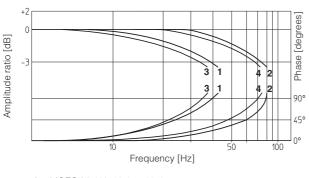

1 = LIQZP-L*-50* **2** = LIQZP-L*-63*

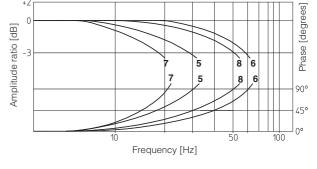


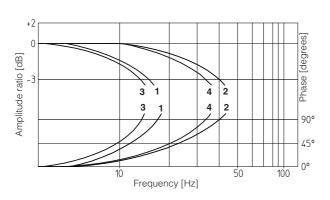

3 = LIQZP-L*-80* **4** = LIQZP-L*-100*

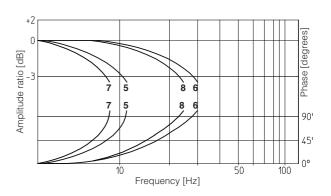

7.2 Response time

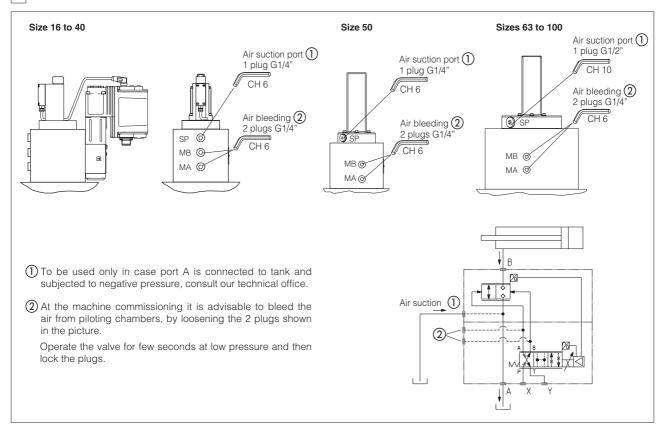
The response times in below diagrams are measured at different steps of the reference input signal. They have to be considered as average values. For the valves with digital electronics the dynamics performances can be optimized by setting the internal software parameters.








7.3 Bode diagrams - stated at nominal hydraulic conditions



 $\begin{aligned} \textbf{5} &= \text{LIQZO-L*-32*: } 10\% \leftrightarrow 90\% & \textbf{7} &= \text{LIQZO-L*-40*: } 10\% \leftrightarrow 90\% \\ \textbf{6} &= \text{LIQZO-L*-32*: } 50\% \ \pm \ 5\% & \textbf{8} &= \text{LIQZO-L*-40*: } 50\% \ \pm \ 5\% \end{aligned}$

8 AIR BLEEDING

9 ELECTRONIC OPTIONS

Standard driver execution provides on the 7 pin main connector:

Power supply

- 24 VDc must be appropriately stabilized or rectified and filtered; **2,5 A** fuse time lag is required in series to each driver power supply. Apply at least a 10000 μ F/40 V capacitance to single phase rectifiers or a 4700 μ F/40 V capacitance to three phase rectifiers

Reference input signal - analog differential input with ±10 VDC nominal range (pin D, E), proportional to desired valve poppet position

Monitor output signal - analog output signal proportional to the actual valve's poppet position with ±10VDC nominal range

Note: a minimum booting time between 400 and 800 ms has be considered from the driver energizing with the 24 Vpc power supply before the valve has been ready to operate. During this time the current to the valve coils is switched to zero.

9.1 Option /F

It provides a Fault output signal in place of the Monitor output signal, to indicate fault conditions of the driver (cable interruption of poppet transducers or reference signal - for /I option): Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC

9.2 Option /

It provides $4 \div 20$ mA current reference and monitor signals, instead of the standard ± 10 V.

Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 V or ±20 mA.

It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

9.3 Option /Q

It provides the possibility to enable or disable the valve functioning without cutting the power supply (the valve functioning is disabled but the driver current output stage is still active). To enable the driver supply a 24 VDC on the enable input signal.

9.4 Option /Z

It provides, on the 12 pin main connector, the following additional features:

Enable Input Signal

To enable the driver, supply 24 VDC on pin 3 referred to pin 2: when the Enable signal is set to zero the valve functioning is disabled (zero current to the solenoid) but the driver current output stage is still active.

Fault Output Signal

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4÷20mA input, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC (pin 11 referred to pin 2): Fault status is not affected by the Enable input signal

Power supply for driver's logics and communication - only for LES

Separated power supply for the solenoid (pin 1, 2) and for the digital electronic circuits (pin 9, 10).

Cutting solenoid power supply allows to interrupt the valve functioning but keeping energized the digital electronics thus avoiding fault conditions of the machine fieldbus controller. This condition aids to realize safety systems in compliance with European Norms EN13849-1 (ex EN954-1).

9.5 Possible combined options

/FI, /IQ and /IZ

10 ELECTRONIC CONNECTIONS AND LEDS

10.1 Main connector signals - 7 pin - standard, /F and /Q options A1

PIN	Standard	/Q	/F	TECHNICAL SPECIFICATIONS	NOTES
А	A V +		•	Power supply 24 VDC	Input - power supply
В	V0			Power supply 0 Vpc	Gnd - power supply
С	AGND		AGND	Analog ground	Gnd - analog signal
	ENABLE			Enable (24 VDC) or disable (0 VDC) the valve, referred to V0	Input - on/off signal
	D Q_INPUT+			Flow reference input signal: ±10 Vpc / ±20 mA maximum range	Input - analog signal
				Defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /I option	Software selectable
Е	E INPUT-			Negative reference input signal for Q_INPUT+	Input - analog signal
	Q_MONITOR	referred to:		Flow monitor output signal: ±10 Vpc / ±20 mA maximum range	Output - analog signal
F	AGND V0			Defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /I option	Software selectable
	FAULT		FAULT	Fault (0 Vpc) or normal working (24 Vpc)	Output - on/off signal
G	G EARTH			Internally connected to the driver housing	

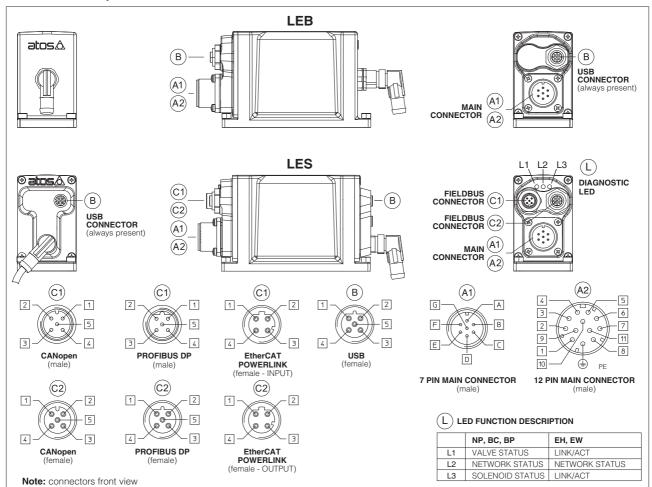
10.2 Main connector signal - 12 pin - /Z option (A2)

PIN	LEB-SN /Z	LES-SN /Z	TECHNICAL SPECIFICATIONS	NOTES
1	V+		Power supply 24 Vpc	Input - power supply
2	V0		Power supply 0 Vpc	Gnd - power supply
3	ENABLE ref	erred to: VL0	Enable (24 Vpc) or disable (0 Vpc) the valve	Input - on/off signal
4	Q INPUT+		Flow reference input signal: ±10 Vpc / ±20 mA maximum range	Input - analog signal
4	Q_INPUT+		Defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /I option	Software selectable
5	INPUT-		Negative reference input signal for Q_INPUT+	Input - analog signal
6	Q_MONITOR referred to:		Flow monitor output signal: ±10 Vpc / ±20 mA maximum range	Input - analog signal
ю	AGND	VL0	Defaults are ±10 Vpc for standard and 4 ÷ 20 mA for /I option	Software selectable
7	AGND		Analog ground	Output - analog signal
/		NC	Do not connect	Gnd - analog signal
8	R_ENABLE		Repeat enable, output repeter signal of enable input, referred to V0	
0		NC	Do not connect	Output - on/off signal
9	NC		Do not connect	
9		VL+	Power supply 24 Vpc for driver's logic and communication	Input - power supply
10	NC		Do not connect	
10		VL0	Power supply 0 Vpc for driver's logic and communication	Gnd - power supply
11	FAULT refer	red to: VL0	Fault (0 Vpc) or normal working (24 Vpc)	Output - on/off signal
PE	EARTH		Internally connected to the driver housing	

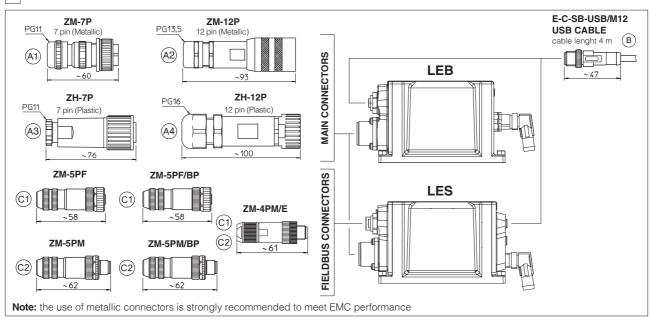
Note: do not disconnect VL0 before VL+ when the driver is connected to PC USB port

	B USB connector - M12 - 5 pin always present				
PIN	PIN SIGNAL TECHNICAL SPECIFICATION (1)				
1	+5V_USB	Supply for external USB Flash Drive			
2	ID	USB Flash Drive identification			
3	GND_USB Signal zero data line				
4	D-	Data line -			
5	D+	Data line +			

(C1) (©1 ©2 BP fieldbus execution, connector - M12 - 5 pin				
PIN	PIN SIGNAL TECHNICAL SPECIFICATION (1)				
1	+5V	Termination supply signal			
2	LINE-A	Bus line (high)			
3	3 DGND Data line and termination signal zero				
4	LINE-B	Bus line (low)			
5	SHIELD				


Notes: (1) shield connection on connector's housing is recommended

©1 (©1) ©2) BC fieldbus execution, connector - M12 - 5 pin				
PIN	PIN SIGNAL TECHNICAL SPECIFICATION (1)				
1	CAN_SHLD	Shield			
2	not used	©1-©2 pass-through connection (2)			
3	CAN_GND	Signal zero data line			
4	CAN_H	Bus line (high)			
5	CAN_L	Bus line (low)			


(c1) ((1) (2) EH, EW fieldbus execution,connector - M12 - 4 pin				
PIN	PIN SIGNAL TECHNICAL SPECIFICATION (1)				
1	TX+	Transmitter			
2	RX+ Receiver				
3	3 TX- Transmitter				
4	4 RX- Receiver				
Housing	SHIELD				

(2): pin 2 can be fed with external +5V supply of CAN interface

10.5 Connections layout

11 CONNECTORS

MODEL CODES OF MAIN CONNECTORS AND COMMUNICATION CONNECTORS - to be ordered separately

VALVE VERSION	LEB LES	LEB /Z LES /Z	BC - CANopen	BP - PROFIBUS DP	EH - EtherCat EW - POWERLINK
CONNECTOR CODE	ZM-7P (A1)	ZM-12P (A2)	ZM-5PF C1	ZM-5PF/BP ©1	ZM-4PM/E ©1
CONNECTOR CODE	ZH-7P (A3)	ZH-12P (A4)	ZM-5PM ©2	ZM-5PM/BP ©2	ZM-4PM/E ©2
PROTECTION DEGREE			IP67		
DATA SHEET			GS208, GS210, K500		

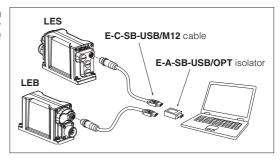
13 PROGRAMMING TOOLS - see table GS500

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver. For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options:

 E-SW-BASIC
 support:
 NP (USB)
 PS (Serial)
 IR (Infrared)

 E-SW-FIELDBUS
 support:
 BC (CANopen)
 BP (PROFIBUS DP)
 EH (EtherCAT)

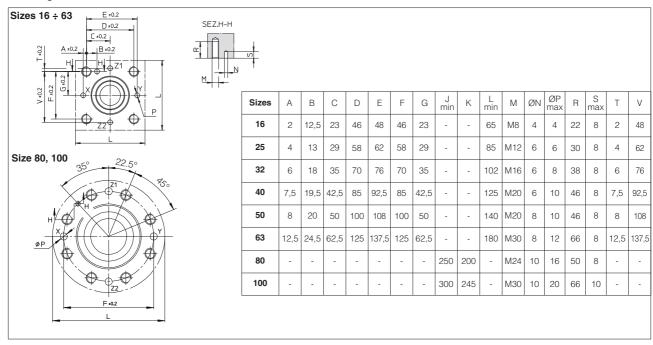

EW (POWERLINK)

E-SW-*/PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

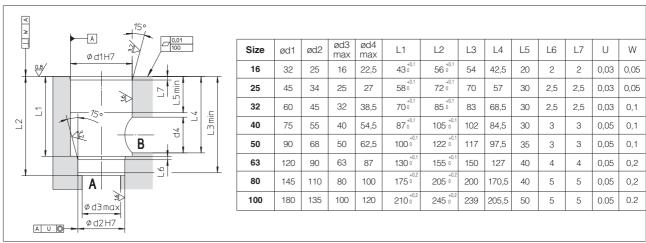
WARNING: drivers USB port is not isolated!

The use of isolator adapter is highly recommended for PC protection (see table GS500)

USB connection

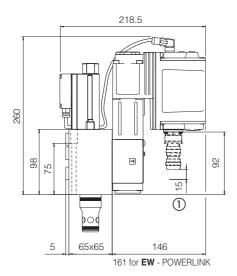

14 FASTENING BOLTS and VALVE MASS

	LIQZO							
Size Fastening bolts class 12.9 (1) Tightening torque Mass (F								
16	N°4 M8x90	35 Nm	5,6	6,2				
25	N°4 M12x100	125 Nm	8,2	8,8				
32	N°4 M16x60	300 Nm	10,9	11,2				
40	N°4 M20x70	600 Nm	16,7	17,3				

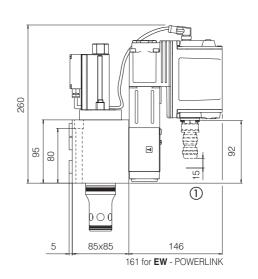

LIQZP				
Size	Fastening bolts class 12.9 (1)	Tightening torque	Mass (Kg)	
50	N°4 M20x80	600 Nm	23,9	24,6
63	N°4 M30x120	2100 Nm	44	44,6
80	N°8 M24x80	1000 Nm	71,6	72,2
100	N°8 M30x120	2100 Nm	122,5	123,1

15 MOUNTING SURFACE AND CAVITY - see table P006 for detailed dimensions

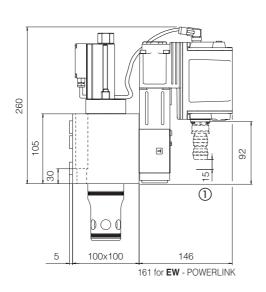
Mounting surface

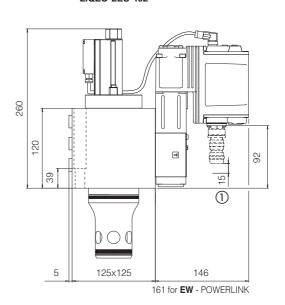


Cavity



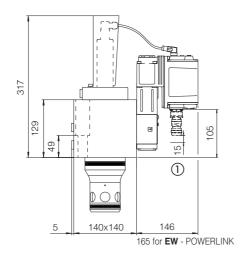
⁽¹⁾ Fastening bolts supplied with the valve

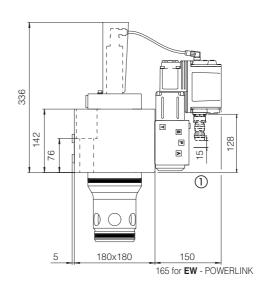

LIQZO-LEB-162 LIQZO-LES-162


LIQZO-LEB-252 LIQZO-LES-252

LIQZO-LEB-322 LIQZO-LES-322

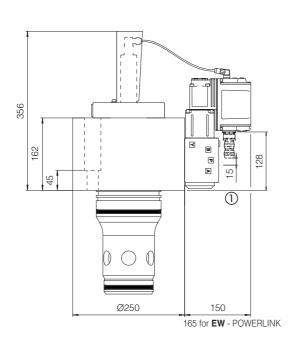
LIQZO-LEB-402 LIQZO-LES-402

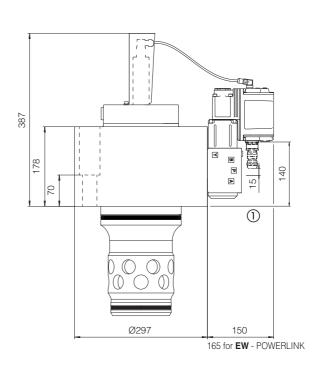



① Space to remove the 7 or 12 pin main connector. For main and communication connectors see section 11, 12

Note: for mounting surface and cavity dimensions, see section 15 and table P006

LIQZP-LEB-502 LIQZP-LES-502


LIQZP-LEB-632 LIQZP-LES-632



LIQZP-LEB-802 LIQZP-LES-802

LIQZP-LEB-1002 LIQZP-LES-1002

1) Space to remove the 7 or 12 pin main connector. For main and communication connectors see section 11, 12

Note: for mounting surface and cavity dimensions, see section 15 and table P006